Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

$\mathrm{RbLi}_{\mathbf{2}} \mathrm{Ga}_{\mathbf{2}}\left(\mathrm{BO}_{3}\right)_{\mathbf{3}}$

Judith L. Kissick and Douglas A. Keszler*

Department of Chemistry and Center for Advanced Materials Research, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
Correspondence e-mail: douglas.keszler@orst.edu

Received 6 December 1999
Accepted 13 March 2000
The structure of rubidium dilithium digallium tris(borate), $\mathrm{RbLi}_{2} \mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)_{3}$, contains two-dimensional sheets of openbranched rings of GaO_{4} tetrahedra and planar BO_{3} triangles that are joined by LiO_{4} tetrahedra to form a threedimensional framework. Ten-coordinate Rb atoms lie on twofold axes and occupy channels within the framework that extend along the b axis.

Comment

Metal borates are widely utilized materials as phosphors and non-linear optical materials (Keszler, 1999). To date, only two single-crystal studies have been reported on alkali-metal borates containing Ga , namely $\mathrm{K}_{2} \mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)_{2} \mathrm{O}$ (Smith et al., 1997) and $\mathrm{Cs}_{2} \mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)_{2} \mathrm{O}$ (Smith, 1995). In this contribution we describe the structure of the new formulation $\mathrm{RbLi}_{2}-$ $\mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)_{3}$.

The structure of $\mathrm{RbLi}_{2} \mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)_{3}$ is characterized by a three-dimensional framework built from corner-sharing LiO_{4} and GaO_{4} distorted tetrahedra and BO_{3} triangles. As can be seen in Fig. 1, the Rb atoms are isolated in channels that extend along [010]. The structure is, in fact, a derivative of $\mathrm{KZn}_{4}\left(\mathrm{BO}_{3}\right)_{3}$ (Smith, 1989), wherein the Li and Ga atoms are well ordered on the two crystallographically distinct Zn sites of $\mathrm{KZn}_{4}\left(\mathrm{BO}_{3}\right)_{3}$.

In a conventional description, the BO_{3} groups may be considered to rest in planes extending parallel to ($\overline{1} 01$). The tetrahedra are then positioned with one $\mathrm{Li}-\mathrm{O}$ or $\mathrm{Ga}-\mathrm{O}$ vector directed approximately orthogonal to this plane.

Topologically similar $M_{2} \mathrm{~B}_{2} \mathrm{O}_{4}(M=\mathrm{Ga}, \mathrm{Li})$ rings are present throughout the structure. The $\mathrm{Ga}_{2} \mathrm{~B}_{2} \mathrm{O}_{4}$ rings connect via shared BO_{3} groups to give Ga -borate layers parallel to ($\overline{1} 02$). The $\mathrm{Li}_{2} \mathrm{~B}_{2} \mathrm{O}_{4}$ rings are also connected into sheets, here parallel to (100), but in addition to linkages through BO_{3} groups, the LiO_{4} tetrahedra share a common vertex, O1, resulting in the formation of the group $\mathrm{Li}_{2} \mathrm{O}_{7}$. This linkage provides a clear chemical distinction between Ga - and Li centered polyhedra, and it likely provides a significant energetic contribution favoring the ordered occupation of the two available distorted tetrahedral sites.

The Rb atom occupies a ten-coordinate site with C_{2} symmetry and a view along the b axis reveals that it sits half-
way between $\mathrm{Ga}_{2} \mathrm{~B}_{2} \mathrm{O}_{4}$ rings in adjacent Ga borate sheets. On the basis of the metrical parameters, a valence of +1.00 (1) is calculated for this atom (Brese \& O'Keeffe, 1991). Bond valences consistent with expected integral values are computed for each of the remaining atoms in the structure.

Figure 1
Schematic diagram showing the crystal structure of $\mathrm{RbLi}_{2} \mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)_{3}$ viewed along [010]. Large open spheres represent O atoms, large filled spheres represent Rb atoms, small filled spheres with open bonds represent Ga atoms, small open spheres with filled bonds represent Li atoms and small open spheres with open bonds represent B atoms (ATOMS; Shape Software, 1998).

Experimental

Single crystals of $\mathrm{Li}_{2} \mathrm{RbGa}_{2}\left(\mathrm{BO}_{3}\right)_{3}$ were grown in a covered Pt crucible by melting a mixture of $26.6 \mathrm{wt} \% \mathrm{LiBO}_{2}$ (99.995%, Alfa), $34.5 \mathrm{wt} \% \mathrm{Rb}_{2} \mathrm{CO}_{3}$ (99.8\%, Alfa), $28.0 \mathrm{wt} \% \mathrm{Ga}_{2} \mathrm{O}_{3}$ (99.99%, Alfa) and $10.9 \mathrm{wt} \% \mathrm{~B}_{2} \mathrm{O}_{3}(99.98 \%$, Alfa). The melt was heated at 1073 K for 12 h to ensure homogeneity. It was then cooled to room temperature at a rate of $0.07 \mathrm{~K} \mathrm{~min}^{-1}$. A clear colorless crystal was physically separated from the matrix for analysis.

Crystal data

$\mathrm{RbLi}_{2} \mathrm{Ga}_{2}\left(\mathrm{BO}_{3}\right)^{2}$
$M_{r}=415.22$
Monoclinic, $P 2 / c$
$a=6.297$ (4) A
$b=4.951$ (3) \AA
$c=12.751$ (6) A
$\beta=91.65$ (6) ${ }^{\circ}$
$V=397.4$ (4) \AA^{3}
$Z=2$

Data collection

Rigaku AFC-6R diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.113, T_{\text {max }}=0.565$
3632 measured reflections
1753 independent reflections
$R_{\text {int }}=0.022$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.072$
$S=1.050$
1753 reflections
79 parameters
$D_{x}=3.470 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15-20^{\circ}$
$\mu=12.893 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colorless
$0.30 \times 0.15 \times 0.05 \mathrm{~mm}$
$\theta_{\text {max }}=35.07^{\circ}$
$h=-10 \rightarrow 10$
$k=-8 \rightarrow 8$
$l=-20 \rightarrow 20$
3 standard reflections every 200 reflections intensity decay: 0.3%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0437 P)^{2}\right. \\
& \quad+0.1503 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.72 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.32 \mathrm{e}^{-3}
\end{aligned}
$$

inorganic compounds

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Rb}-\mathrm{O} 1$	3.284 (2)	B1-O2	1.382 (3)
$\mathrm{Rb}-\mathrm{O} 2^{\text {i }}$	2.992 (2)	$\mathrm{B} 1-\mathrm{O} 4^{v}$	1.369 (3)
$\mathrm{Rb}-\mathrm{O}^{\text {ii }}$	3.354 (2)	$\mathrm{B} 1-\mathrm{O} 5^{\text {vi }}$	1.377 (3)
$\mathrm{Rb}-\mathrm{O} 4^{\text {iii }}$	3.059 (2)	B2-O1	1.335 (4)
$\mathrm{Rb}-\mathrm{O} 4^{\text {iv }}$	3.120 (2)	$\mathrm{B} 2-\mathrm{O}^{\text {vii }}$	1.395 (2)
$\mathrm{Ga}-\mathrm{O} 2$	1.8464 (16)	$\mathrm{Li}-\mathrm{O}^{\text {viii }}$	1.845 (4)
$\mathrm{Ga}-\mathrm{O} 3$	1.8245 (18)	$\mathrm{Li}-\mathrm{O} 2^{\text {i }}$	1.997 (5)
$\mathrm{Ga}-\mathrm{O} 4$	1.839 (2)	$\mathrm{Li}-\mathrm{O3}^{\text {ix }}$	1.918 (4)
$\mathrm{Ga}-\mathrm{O} 5$	1.8317 (18)	$\mathrm{Li}-\mathrm{O}^{\text {viii }}$	1.951 (5)
$\mathrm{O} 3-\mathrm{Ga}-\mathrm{O} 5$	112.05 (7)	$\mathrm{O} 1-\mathrm{B} 2-\mathrm{O}^{\text {vii }}$	123.07 (13)
$\mathrm{O} 3-\mathrm{Ga}-\mathrm{O} 4$	107.37 (9)	$\mathrm{O} 1-\mathrm{B} 2-\mathrm{O} 3$	123.07 (13)
$\mathrm{O} 5-\mathrm{Ga}-\mathrm{O} 4$	109.16 (8)	$\mathrm{O}{ }^{\text {vii }}-\mathrm{B} 2-\mathrm{O} 3$	113.9 (3)
$\mathrm{O} 3-\mathrm{Ga}-\mathrm{O} 2$	109.52 (8)	$\mathrm{O} 1^{\text {viii }}-\mathrm{Li}-\mathrm{O} 3^{\text {ix }}$	110.1 (2)
$\mathrm{O} 5-\mathrm{Ga}-\mathrm{O} 2$	113.95 (8)	$\mathrm{O} 1^{\text {viii }}-\mathrm{Li}-\mathrm{O}^{\text {viii }}$	104.7 (2)
$\mathrm{O} 4-\mathrm{Ga}-\mathrm{O} 2$	104.31 (8)	$\mathrm{O} 3{ }^{\text {ix }}-\mathrm{Li}-\mathrm{O} 5^{\text {viii }}$	108.0 (2)
$\mathrm{O} 4^{\mathrm{v}}-\mathrm{B} 1-\mathrm{O} 5^{\text {vi }}$	121.08 (19)	$\mathrm{O} 1^{\text {viii }}-\mathrm{Li}-\mathrm{O} 2^{\text {i }}$	125.9 (2)
$\mathrm{O} 4{ }^{\text {v }}-\mathrm{B} 1-\mathrm{O} 2$	120.66 (18)	$\mathrm{O} 3^{\mathrm{ix}}-\mathrm{Li}-\mathrm{O} 2^{\mathrm{i}}$	102.73 (19)
$\mathrm{O} 5^{\text {vi }}-\mathrm{B} 1-\mathrm{O} 2$	118.25 (18)	$\mathrm{O} 5^{\text {viii }}-\mathrm{Li}-\mathrm{O} 2^{\text {i }}$	104.4 (2)

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x, y-1, \frac{3}{2}-z$; (iii) $-x, y, \frac{3}{2}-z$; (iv) $x, y-1, z$; (v) $-x, 2-y, 1-z$; (vi) $x, 1+y, z$; (vii) $1-x, y, \frac{3}{2}-z$; (viii) $x-1, y, z$; (ix) $x-1, y-1, z$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve struc-
ture: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

This work was supported by the Solid State Chemistry Program of the National Science Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1279). Services for accessing these data are described at the back of the journal.

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Keszler, D. A. (1999). Curr. Opin. Solid State Mater. Sci. 4, 155-162.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.0. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shape Software (1998). ATOMS. Shape Software, 521 Hidden Valley Rd, Kingsport, TN 37663, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, R. W. (1989). PhD dissertation, Oregon State University, USA.
Smith, R. W. (1995). Acta Cryst. C51, 547-549.
Smith, R. W., Kennard, M. A. \& Dudick, M. J. (1997). Mater. Res. Bull. 32, 649656.

